The hepatitis C virus 3′-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase
نویسندگان
چکیده
Enhancement of eukaryotic messenger RNA (mRNA) translation initiation by the 3' poly(A) tail is mediated through interaction of poly(A)-binding protein with eukaryotic initiation factor (eIF) 4G, bridging the 5' terminal cap structure. In contrast to cellular mRNA, translation of the uncapped, non-polyadenylated hepatitis C virus (HCV) genome occurs independently of eIF4G and a role for 3'-untranslated sequences in modifying HCV gene expression is controversial. Utilizing cell-based and in vitro translation assays, we show that the HCV 3'-untranslated region (UTR) or a 3' poly(A) tract of sufficient length interchangeably stimulate translation dependent upon the HCV internal ribosomal entry site (IRES). However, in contrast to cap-dependent translation, the rate of initiation at the HCV IRES was unaffected by 3'-untranslated sequences. Analysis of post-initiation events revealed that the 3' poly(A) tract and HCV 3'-UTR improve translation efficiency by enabling termination and possibly ribosome recycling for successive rounds of translation.
منابع مشابه
The hepatitis C virus 30-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase
Enhancement of eukaryotic messenger RNA (mRNA) translation initiation by the 30 poly(A) tail is mediated through interaction of poly(A)-binding protein with eukaryotic initiation factor (eIF) 4G, bridging the 50 terminal cap structure. In contrast to cellular mRNA, translation of the uncapped, non-polyadenylated hepatitis C virus (HCV) genome occurs independently of eIF4G and a role for 30-untr...
متن کاملThe hepatitis C virus RNA 3'-untranslated region strongly enhances translation directed by the internal ribosome entry site.
The positive-strand RNA genome of the hepatitis C virus (HCV) is flanked by 5'- and 3'-untranslated regions (UTRs). Translation of the viral RNA is directed by the internal ribosome entry site (IRES) in the 5'-UTR, and subsequent viral RNA replication requires sequences in the 3'-UTR and in the 5'-UTR. Addressing previous conflicting reports on a possible function of the 3'-UTR for RNA translat...
متن کاملPolypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells.
The 3' untranslated region (3'UTR) of the dengue virus (DENV) genome contain several sequences required for translation, replication and cyclization processes. This region also binds cellular proteins such as La, polypyrimidine tract-binding protein (PTB), Y box-binding protein 1, poly(A)-binding protein and the translation initiation factor eEF-1 alpha. PTB is a cellular protein that interacts...
متن کاملHepatitis C virus 3′UTR regulates viral translation through direct interactions with the host translation machinery
The 3' untranslated region (3'UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3'UTR and the host ribosome. The 3'UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surfac...
متن کاملThe 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site.
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3'-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006